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ABSTRACT 

In order to optimize the quality of data obtained from lunar and 
planetary photographic missions, a general and versatile resolution 
measure is needed that accounts for the numerous degrading factors 
inherent in the facsimile system. A mathematical formalism is devel- 
oped which leads to a single number or figure of merit measuring a 
characteristic dimension of the smallest detectable object in a picture 
of an extended complex scene. The formalism is in modular form and 
can include the effects on the system resolution due to statistical 
and photometric properties of the surface being viewed, atmospheric 
turbulence, image motion, characteristics of the television and record- 
ing system, system noises, and properties of the human observer. The 
treatment is unified within the framework of linear system analysis and 
assumes that portions of the transfer process act as spatial filters and 
that the human observer functions as a signal-to-noise optimizing low- 
pass filter. The contrast present in the object scene is determined by the 
statistical and photometric properties of the scene. A comparison of the 
figure of merit to conventional resolution measures is made, indicating 
its advantages for system design and performance evaluation over the 
conventional engineering comparison techniques, which do not predict 
absolute performance. ,’ 

1. INTRODUCTION 

The purpose of this Report is to determine a single 
number or figure of merit characterizing the picture reso- 
lution expected from a spacecraft visual system. It is to 
be a measure of a characteristic dimension of the smallest 
typical object just detectable by an observer viewing the 
object scene reproduction. The calculation is to include 
the effects of the spacecraft environment and object scene 
contrast characteristics as related to picture quality. In 
the following Sections, a suitable resolution measure is 
formulated and expressed as a function of viewing geom- 

etry, object scene photometric characteristics, inherent 
facsimile system characteristics, system noise, image 
motion and similar degrading effects, and the capabilities 
of a human observer. The need for such a tool is evident 
in light of the problem at hand, namely, the optimization 
of the quality of the picture data obtained by a space- 
craft with respect to mission variables. 

Conventional resolution measures are inadequate in the 
present context. The usual approach is to determine the 
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limiting spatial frequency such that a set of light and 
dark bars of fixed contrast is just resolvable through the 
system. This approach has its principal value in engi- 
neering evaluations and comparisons of systems but is 
hardly an aid to the solution of the present problem. 

Thus, the figure of merit is intended as a complete and 
versatile measure of the resolution capabilities of a sys- 

tem when viewing a complex, extended scene. In par- 
ticular, it has been applied to the Ranger impacting 
television mission as a tool in determining, from the 
standpoint of picture quality and resolution, optimal ap- 
proach trajectories and impact areas before and during 
spacecraft flight operations. The analysis presented here, 
however, is general in nature and can be applied to a 
wide variety of imaging systems and problems. 

II. DEFINITION OF THE FIGURE OF MERIT 

The purpose of lunar spacecraft television systems is, 
of course, the acquisition of lunar surface information. 
The single number or figure of merit defined here is 
intended as a measure of the overall capability of a tele- 
vision system to accomplish this goal as a function of 
system characteristics, trajectory, viewing geometry, and 
lunar photometric properties. This capability is predi- 
cated almost entirely on the ability of a human observer 
to detect and recognize objects and features on the lunar 
surface from the system reproduction of the scene being 
viewed. Thus, to define an appropriate criterion, one must 
understand the meaning of “detection” and “recognition” 
for the human observer. 

Detection is a rather straightforward concept allowing 
simple quantitative description. Detection of something 
in a picture implies cognizance of detail other than a 
uniform background plus random noise without neces- 
sarily knowing exactly what it is. Thus, it is required 
simply that the particular detail of interest have sufficient 
contrast with the background to be lifted out of the back- 
ground noise. That is, for a given detail to be detectable, 
it must have a signal to root-mean-square (rms) noise 
ratio greater than some predictable value. 

Recognition is a far more nebulous and subjective con- 
cept, for which a satisfactory quantitative description has 
not been found. It implies a complex correlation of what 
the observer sees with his past experience and bias to 
the end of properly cataloging the new information he is 
receiving. The problem to be concerned with here is 
whether or not thc image information the observer 
receives will give him, after he processes it, an accurate 
representation of the actual object scene being viewed. 

The variety of shapes in nature is myriad, and just how 
the luminance gradients in the image the observer views 
must correlate with the surface curvatures of the actual 
object for proper interpretation is indeed unknown and 
must be a complicated function of the observer‘s back- 
ground experience, among other factors. Thus, at this 
time, there is no quantitative way of predicting whether 
or not a particular object being viewed will be properly 
recognized by an observer from the system reproduction 
of the scene, much less what the threshold for such recog- 
nition might be as a function of viewing geometry, sys- 
tem parameters, and image blur. 

An approximate approach to circumvent this dilemma 
would be to postulate that the threshold size for recog- 
nition of an object under given conditions has to be a 
certain number of times larger than the threshold size 
for detection under the same conditions. The magnitude 
of this coefficient is certainly not obvious a priori and 
undoubtedly varies with the set of objects under consid- 
eration. This approach is currently under investigation 
by the authors, but no results are available yet. 

With the ideas of detection and recognition in mind, 
then, a measure of system resolution in terms of the abil- 
ity of an observer to detect relief surface features against 
a uniform background can be formulated. Adopting and 
extending Schade’s idea (Ref. l), a resolution element is 
defined as the smallest square on the lunar surface with 
representative contrast with the background which, when 
viewed in the system reproduction, produces a signal-to- 
rms-noise ratio of 3 for the observer. The value of 3 for 
the threshold signal-to-noise ratio is taken from Schade’s 
work but is currently being re-evaluated experimentally 
in the present context. 

2 
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To specify the contrast of the resolution element with 
the uniform background, one must consider the origin of 
this contrast. Assuming homogeneous surface properties, 
it arises in two ways. First, various portions of the surface 
of a relief feature have different orientations with respect 
to the light source and the observer than does the back- 
ground and, hence, different luminance values. Second, 
the shadow cast by a relief feature makes an important 
contrast contribution. For the present purposes, a meas- 
ure of the contrast between a point on the surface of a 
relief feature or in its shadow and the uniform back- 
ground is taken to be the magnitude of the difference 
in their luminances. 

Since, in this approximation, the resolution element is 
clearly intended to be representative of small surface 
features (“small,” implying on the order of the resolution 
limits of the system), the appropriate value of its contrast 
should be some sort of average over the contrasts occur- 
ring about the surface and in the shadow of an “average” 
lunar feature. Note that the choice of a resolution element 
with uniform luminance to represent complex surface 
features is not unrealistic at the limits of system resolu- 
tion in the detection sense, since the details of the more 
complicated luminance distribution for the real object 
will be largely obscured. The averaging process should 
use as its weighting function area elements as projected 
into the image plane on the face of the camera sensor 
tube. This choice is made because the observer sees a 
reproduction of this projection of the object scene and 
from it, extracts what information he can. In the selection 
of a representative lunar feature from which to derive 
an average contrast, one has no knowledge of lunar sur- 
face statistics on the scale of the expected resolution 
limits of the Ranger camera systems. It is felt, however, 
that a right-circular cone whose surface has the lunar 
photometric properties offers a promising model if its 
base angle is chosen to correspond to observed lunar 
characteristics. A conical shape appears useful because it 
seems intuitively quite representative of features found 
on the Moon on a larger scale-both protuberances and 
depressions. Furthermore, a cone has no preferred sur- 
face orientation azimuthally about its axis, and such iso- 
tropy with respect to azimuth about the local surface 
normal is expected, on the average, to exist on the Moon. 
While this isotropy holds for any symmetrical object, the 
cone is probably the simplest for this application. 

Now, to determine an appropriate value for the cone 
base angle, it is noted that Kopal (Ref. 2), among others, 
has estimated from visual and radar observations of the 
Moon that the surface has a mean slope of 15 deg or 
less with the local horizontal. No estimates of variations 

about this mean are given, but certainly much steeper 
and more gradual slopes are expected. For the present 
purposes, however, the value of 15 deg will be taken as 
representative. It is instructive, of course, to investigate a 
system’s performance when viewing various features from 
slopes of, say, 5 up to 45 deg with the horizontal. 

The resolution-element contrast with the background, 
then, for a particular point on the lunar surface will be 
determined by averaging the magnitude of the object-to- 
background luminance difference over the images of an 
upright and an inverted 15-deg base-angle cone located 
at that point. This will include the contrast effects of 
both protrusion- and depression-type features. The aver- 
age is calculated separately over those regions of the 
image which are brighter than the background and those 
regions, including the shadow, which are darker than 
the background. This distinction is made because the sys- 
tem must respond with opposite signals for each, so that 
their respective contrast contributions should not be con- 
sidered strictly equivalent. 

Thus, both light and dark resolution elements are con- 
sidered, the sizes of which are determined by requiring 
that their images, when processed through the television 
system, produce signal-to-rms-noise ratios of 3 for an 
observer. The television process includes any degrading 
factors such as image motion and bandwidth limitations. 
Threshold-detectable cone diameters are determined by 
requiring the average (over upright and inverted cones) 
of lighter-than-background and darker-than-background 
image areas of the cones to equal the image areas of the 
light and dark resolution elements, respectively. The fig- 
ure of merit is then defined as the effective threshold- 
detectable cone diameter. The reciprocal of this effective 
diameter is taken to be equal to the sum of the reciprocals 
of the threshold-detectable cone diameters determined 
for lighter-than-background and darker-than-background 
contrasts. Note that this addition law is an attempt to 
measure the interaction between highlight and shadow 
areas. That is, if an object feature displays both light and 
dark areas, it is more easily detectable than if it had only 
a light area or a dark area. However, if, for example, a 
feature must be much larger for its light portion to be 
detectable than its dark portion, the threshold detection 
would be made almost completely from the dark portion. 
In the opposite case, the threshold detection is made 
from the light portion. These effects are inherent in the 
above addition law. 

It should be noted that with the assumption of a homo- 
geneous lunar surface, the figure of merit defined here is 
a measure of the sizes of relief surface detail resolvable 
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through the system. Inhomogeneities certainly exist in the 
photometric properties of the lunar surface, but detection 
of such features is dependent upon their nature and sta- 
tistical distribution and is not touched upon by the pres- 
ent figure of merit. 

It is felt that the figure of merit as defined above 
provides a very useful indicator of the performance 
capabilities of a spacecraft television system in terms of 
resolution. It incorporates the effects of the environment 
in which the system must operate, the nature of the scene 
being viewed, the system’s inherent parameters, and the 
human observer’s capabilities into a measure of the 
smallest objects detectable in the scene being viewed. 
Although it is expected that the numbers resulting from 

a calculation of the figure of merit have meaning in their 
absolute magnitude, errors in the photometric property 
data or in other necessary experimentally obtained data 
could cause deviations. The usefulness of the figure of 
merit does not lie solely in its absolute magnitude, how- 
ever. The variation of its value as a function of position 
on the lunar surface can be used to optimize the choice 
of impact point or trajectory from the standpoint of 
relative resolution capabilities. That is, one chooses as the 
optimum viewing or impact point the position at which 
the figure of merit reaches a minimum. That it does reach 
a minimum value at some point on the lunar surface for 
a given family of trajectories will be seen later. In its 
application to the Ranger impacting spacecraft, this fea- 
ture of the figure of merit concept proved extremely useful. 

4 
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111. DESCRIPTION OF SYSTEM ANALYSIS APPROACH 

Having defined the quantity of interest, the figure of merit, it remains to 
elucidate a mathematical approach to its calculation in general. That is, a quanti- 
tative description must be formulated for the viewing geometry, the lunar photo- 
metric properties, the spacecraft television and recording system as a whole, the 
effects of image blur, and the capabilities of the human observer. 

A. Viewing Geometry 

For the purpose of describing the viewing geometry, a Moon-centered coordi- 
nate system is defined as follows. Let the plane containing the mean Earth-Moon 
line and the mean Sun-Moon line be the xy-plane of a right-handed Cartesian 
coordinate system with its origin at the center of the Moon. Let the mean 
Earth-Moon line be along the positive x-axis, and let the direction of the com- 
ponent of the lunar spin vector normal to the xy-plane define the positive z-axis 
(see Fig. 1). 

The notation will be adopted that an arbitrary vector in the Moon-center%d 
coordinate system is written V and a unit vector in the same direction is written V. 

The spacecraft is located in this coordinate system with the following vector 
definitions, where 0 is the observed point of interest on the lunar surface (see 
Fig. 1): 

A A A  
x,;, z 

RMs 
unit vectors along the principal Cartesian directions 
unit vector from the Moon’s center to the Sun’s center 

z 

/ PLANE 

X 

MEAN EARTH-MOON 
LINE 

Fig. 1. Vector definitions 
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A 

No 
no 
n, 

vsc 

unit normal to the spherical lunar surface at point 0 
unit vector from the spacecraft camera to point 0 
unit vector along the spacecraft camera optical axis 
velocity vector of the spacecraft with respect to the Moon-centered 
coordinate system 

A 

4 

With these coordinate-system and vector definitions, the relative trajectory, 
illumination, observation, and surface normal geometry can be described. The 
definitions will be drawn upon freely in the following Sections. 

0. Lunar Reflectivity Properties 

The following lunar reflectivity properties are based on a report by Eimer 
(Ref. 3) summarizing the results of a reflectivity study of the Moon by Herriman, 
Washburn, and Willingham (Ref. 4). It is pointed out that the present level of 
knowledge is founded solely on Earth-based observations of lunar maria. Thus, 
one has information only about the average reflective properties of selected areas 
which are relatively large compared with those presumably resolvable through 
spacecraft television systems. It must therefore be assumed' that the lunar surface 
is covered with a photometrically homogeneous material having the average 
properties found in the mare regions. 

The Moon's reflective characteristics are quantitatively described by the lunar 
reflectance function, which is the reflectance coefficient of the surface as a function 
of incidence angle i, emission angle e, and phase angle g (see Fig. 2). That is, the 
surface luminance as a function of the photometric geometry is given by the 
expression 

b (i, e, g)  = E,, p ( i ,  e,  g)"' (1) 

where b ( i , e ,  g) is the surface luminance in foot-lamberts, E,, is the mean solar 
constant at the Moon's surface in lumens per square foot (foot-candles), and 
p (i, e, g)  is the reflectance function of the surface. 

*In Ref. 4, the notation p (i, e, g )  = po@ (i, e,  g )  is used, where p,' is the full-Moon albedo or 
reflectance coefficient for normal incidence and emission and 9 (i, e,  g )  is the surface photometric 
function normalized such that 9 (0, 0, 0)  E 1. 

DIRECTION OF EMISSION 
TO OBSERVER 

SURFACE 

DIRECTION OF 
INCIDENT ILLUMINATION 

SURFACE 
...................... 

Fig. 2. Photometric angles 
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It is further pointed out that because of special observed properties of the lunar 
surface, the reflectance function can be written as a function of only two angles, 
g and (I. The angle g is still the phase angle and (Y is the projection of the emission 
angle e in the plane containing the directions of incidence and emission. Note that 
(I is considered positive if its areal sector (L T / 2 )  does not overlap the areal sec- 
tor (I 7) between the incidence and emission directions and is considered nega- 
tive otherwise (see Fig. 3). 

Figure 4 shows the resultant reflectance function from the most recent compila- 
tion of available data by Willingham (Ref. 5). 

The photometric angles introduced above can be expressed in terms of the 
spacecraft viewing geometry (see Fig. 1) as follows. In AMoon-centered coordi- 
nates, the direction of incidence, neglecting parallax, is - R,, and the direction of 
emission is --& Then, letting the surface of interest have unit normal N, the 
angles are 

A A  

i = arccos (N ;RYs), 

g = arccos (-no RMs), 0 I g A X  

0 4 i 4 7 / 2  

e = arccos(-N*&), O L e L x / 2  ( 2 )  
A A  

A 

To express the angle (Y similarly, consider Fig. 5. Let A be a unit normal to the 
plane containing the incidence and emission directions. That is, let 

A 

Note that the case for which 13, X R,, I = 0 is the case in which the phase angle 
equals zero or 7. The symmetries imposed by assuming that the reflectance func- 
tion can be written as a function of g and (Y also require that for g = 0, p must be 
a constant independent of (I. This is intimately connected with the fact that the 
definition of (Y loses all meaning for the zero phase-angle case. The case in which 
g = x is that of glancing incidence and emission, for which p will be taken as 
zero by definition. Avoiding these situations as trivial, the unit vector N, in the 
direction of the component of N in the plane containing the incidence and 
emission directions can be written as 

A h  
Note again that the case for which IN X AI = 0 is one in which the definition 
of (Y loses its meaning and corresponds to glancing incidence and emission, 
another trivial case. So, avoiding it, the angle (I can be written with the proper 
sign as 

4 4 A  x 
sina = [(N, X no)*A] ,  - -L 

2 - " - 2  

Expanding the right side, one obtains 

7 
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DIRECTION OF INCIDENCE / DIRECTION OF INCIDENCE 
DIRECTION 

OF EMISSION 

SURFACE NORMAL 

a POSITIVE a NEGATIVE 

Fig. 3. Definition and sign convention for the angle (Y 

a 

Fig. 4. lunar reflectance function; Sytinskaya data 
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where the vector identities for arbitrary vectors A, B, C, and D 

A X (B X C) = B ( A * C )  - C ( A * B )  
and 

(A X B ) * ( C  X D) = C *  [D X (A X B)] 

have been used. Then, using Eq. (2), the expression for (Y can be written as 

(3) 
cos g cos e - cos i 

[ cos2 i + cos2 e - 2 cos i cos e cos g]’/$ sina = 

where it is assumed that 0 4  i < ~ / 2 ,  O I e  < n/2, and 0 < g < 7. 

This, then, specifies the lunar reflectance properties to be used under the first 
approximation of Earth-based observations and homogeneity and relates them 
to the viewing geometry discussed earlier. Contrasts due to local surface orienta- 
tions about a feature can now be obtained by calculating g and CY for each normal 
N and finding p from the relation p = p (g, C Y ) .  

C. Television and Recording System 

The function of the system to be considered here consists of imaging a luminance 
distribution on a vidicon face, processing the resulting electrical signals through 
the electronics, reconstructing them on a kinescope, and forming a photographic 
positive of the kinescope reproduction of the scene. The input and output func- 
tions, respectively, are taken to be the luminance distribution being viewed and 
the transmission distribution on the output film positive. (The output could just 
as well have been taken to be a luminance distribution, but this differs only by a 
multiplicative constant from the transmission distribution, and the constant 
depends on the source illuminating the transparency.) 

First to be determined is the transfer function for the system, that is, the output 
transmission as a function of the luminance of a uniform input scene. For fixed 
system parameters, the output transmission is solely dependent on the time- 
integrated spectral irradiance (energy per area per wavelength) of the vidicon’s 
photoconductive surface weighted with the vidicon’s spectral response function. 
From experimental evidence, it is apparently reasonable to assume that vidicons 
have intensity-independent spectral response or photon efficiency functions. Thus, 
if H ( A )  is the spectral irradiance of a photocondiictive wrface (power per area 
per wavelength) and f v  (A) is the vidicon’s spectral response function, the time- 
integrated “vidicon illuminance” (vidicon luminous A ux per area)? dQ,/dA’ on 
which the output transmission depends is given by 

where 6s  is the exposure time. Thus, once the output transmission as a function 
of the time-integrated vidicon illuminance of the photoconductive surface is 

“‘Vidicon luminous flux” is defined as the analog of standard visual luminous flux but with the 
vidicon’s spectral-sensitivity curve instead of that of the human eye. 

9 
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known, the system response to a uniform input with any spectral distribution 
H ( A )  can be predicted. 

It is useful to calculate dQv/dA' in terms of the luminance of the object being 
viewed in photovisual units, since all the available lunar photometric data are in 
these units. Let a small plane area element SA be located in the camera's field of 
view very distant from the lens compared to its focal length F, and let rc. be the 
position vector of the center of SA in a camera-lens-centered coordinate system, 
yhere the lens lies in the uv-plane (Fig. 6 ) .  Let the area SA have a unit normal 
N and spectral radiance N (A, e") (power radiated per wavelength per solid angle 
per emitter area projected normal to the emission direction G). In the present 
case, ^e = -rr/ I r, I = -?r. Then, letting the lens have an area A z ,  the spectral 
radiant flux S P ( h )  incident on the lens from SA is approximately 

If the lens has a spectral radiant transmittance tz (A) and using Eq. (A-11) from 
Appendix A to find the image area SA' of the object 6A (assuming perfect focus), 
the time-integrated vidicon illuminance dQv/dA' incident on the vidicon's photo- 
conductive surface (see Eq. 4) is 

Assuming a constant emission rate, this can be rewritten as 

where f is the lens f-number, S T  is the exposure time, b,,(-; , ,)  is the vidicon 
luminance of the object surface, and tb is the gross transmission coefficient of 
the lens, so that 

8h' ' 

Fig. 6. Geometry for transfer-function calibration 
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Note that from Eq. (5), the vidicon luminous flux incident on the photoconductive 
surface is directly proportional to the object’s luminance with respect to the 
vidicon’s spectral-sensitivity curve. In fact, the vidicon luminous flux is propor- 
tional to the object’s luminance with respect to any spectral-sensitivity curve 
including that of the human eye, but the proportionality constant depends on 
the spectral distribution of the source. That is, using the above notation, one has 

where f e ( A )  is the spectral sensitivity of the standard human observer and 
b ( - r,) is the photovisual luminance of the source. Obviously, the constant C ,  
depends upon the spectral distribution N ( A , $ )  of the source and the vidicon 
spectral response function fir (A). 

With these results in mind, then, the transfer function is just as meaningful in 
terms of the visual luminance of distant objects as it is in terms of the quantity 
dQv/dA’ defined in Eq. (4) if care is taken with the spectral distribution of the 
source. Such a procedure was followed in the calibration of the Ranger cameras 
since, as mentioned earlier, all of the photometric information about the Moon is 
in photovisual units. Thus, the output film transmission t was determined as a 
function of the visual luminance b of a uniform object source with the same 
spectral distribution as that observed for light reflected from the lunar surface. 
Graphs of typical transfer functions will be found in Figs. 7 and 8. 

IMPUT LUMINANCE, f t - L  

Fig. 7. Uniform source transfer function for Ranger I X  
PI- and P,-cameras 

11 



J P L  TECHNICAL REPORT NO.  32-666 

INPUT LUMINANCE, ft-L 

Fig. 8. Uniform source transfer function for Ranger I X  
P:%- and P,-cameras 

Whereas such transfer characteristics give the system response to a uniform 
scene input, one is interested in determining the system response to spatially vary- 
ing scenes. A mechanism that might be used to describe this case at least in some 
first approximation is a two-dimensional analog of the familiar linear system 
analysis so useful in describing electrical and mechanical systems. Unfortunately, 
the jristification for using this mcthod for a complex television and recording 
systcm is not at all a s  clear as in the latter two cases, where well defined equa- 
tions of motion apply. A summary of linear system analysis can be found in 
Appcndix R,  where it is pointed out that there are two important aspects to 
consider. First, a linear system, by definition, has a response to a sum of inputs 
which equals the sum of its responses to each element of the input sum irrespective 
of the others. Sccond, a complete orthogonal set of “characteristic” functions is 
required which, if processed through the system, are altered only in normalization. 

One hopes that thc first condition is reasonably satisfied if the luminanccx 
variations found in tlw inptlt scene stay within a linear region of the transfer 
curve. This is highly probable, since, by the nature of the lunar reflectance func- 
tion, scc’ncs of very Iiigh contrast (neglcxcting shadows) are not to be expected. 
An obvious first canditlatc, as the set of characteristic functions for the second 
condition is a set of two-dimc.nsiona1 sine waves. Since no theory exists to evaluatc 
their suitaMity, csperimental verification must be performed. It has not yet been 
possible to do this in detail, so it will simply be assumed that little harmonic 
distortion occurs for the system operating on a small-amplitude sine wave such 
a s  occurs in the Fourier decomposition of a ]ow-contrast scene. T h s ,  as a 
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reasonable first approximation, the present system from object-scene luminance 
distribution to output-film transmission distribution will be considered linear and 
will be discussed in terms of two-dimensional Fourier linear system analysis. 

Although only the results will be used here, an outline of such a formalism 
can be found in Appendix B. The system's response to nonuniform luminance 
distributions is calibrated by its response to a set of two-dimensional sine waves. 
Hence, one is interested in the system's response, as a function of spatial fre- 
quency, to luminance distributions of the form b (u, v )  = bo + exp [ i  (kuu t- k v v ) ] ,  
where b, is a constant greater than 1 (negative luminances are meaningless) and 
k and kv are spatial frequencies in the (u, v )  Cartesian coordinate system chosen 
as reference. The response of a linear system to such a stimulus, assuming a 
transfer function of the form t = ab + t,,, where a and t,, are transfer constants 
and t and b are the output transmission and input luminance, respectively, is 
taken to be 

t (& 7 )  = to + a (u, v )  b,, + a (u, v )  G ( u ,  v ,  ku, k exp [i ( k p  + kyv) l  
In this expression, a (u, v )  is a generalized transfer coefficient accounting for the 
scan-line structure and transfer nonuniformities in the output film, t,, is the base 
film transmission, and G (u ,  v,  k u ,  k v )  is the system sine-wave response or modula- 
tion transfer function accounting for changes in the phase and amplitude of the 
sine wave due to the dynamic response characteristics of the system. The coordi- 
nates ( [ , q )  of the output are functions of the input coordinates ( u , v )  accounting 
for linear magnification, rotation, or geometric distortion. This result can be 
derived using scanning theory and by imposing further linearity conditions on 
parts making up the complex system, at least over the range of inputs for which 
the overall system response is taken to be linear. 

For an arbitrary input luminance distribution b ( u ,  v )  whose Fourier transform 
exists and is defined by 

b ( U , v )  = / _ d k " j _ ~ ~ k ~ B ( k " , k " ) e x ~ [ i ( k " u  + kvv)l 

and 
1 r m  f r  

the expression for the output transmission distribution is 

J - x  J - x  

This can be written in the form of a convolution integral like Eq. (B-5), so that 

where 

g (u ,  v ,  r, s) = 1, d k ,  /-:&G ( u ,  v ,  k, ,  k , )  exp [i (k,r + k,s)l 

The system transfer function having been determined earlier, the sine-wave 
response function remains to be found. It will be assumed to be uniform over 
the vidicon surface and, thus, a function of spatial frequency only. Since the 
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system sine-wave response function is in general complex, its determination 
requires the measurement of two independent quantities. These will be taken 
to be the amplitude and phase. 

The amplitude portion is measured simply by placing illuminated photographic 
transparencies with spatially sinusoidal transmission distributions of different 
frequencies in the camera’s field of view and determining the relative modula- 
tion changes in the output transparencies. Note that the Ranger system has fixed 
focus at infinity and fixed aperture, so that the detailed calibration is performed 
by placing the targets normal to the optical axis at infinity, say with a collimator. 
For a variable focus and/or aperture system, the calibration must be done as a 
function of focus and/or aperture, since these factors have effects on the system 
performance. In either case, the sine-wave response at a given spatial frequency 
must be determined as a function of the azimuthal orientation of the direction of 
the sine wave about the optical axis (let the “direction” be defined by a line in the 
plane of the transparency normal to the “ridges” of the sine wave). Because of 
the nature of the raster scanning process, certain symmetries can be imposed on the 
sine-wave response function with respect to its azimuthal variation. The raster 
forms a natural Cartesian coordinate set with one axis parallel and one axis 
normal to the scan lines. Let the coordinates in this system be ( u , v )  as described 
above. Then, if the scanning beam has a symmetrical current cross section about 
the longitudinal axis, the following symmetries can be imposed at least on the 
amplitude portion of the sine-wave response function. They are, using the notation 
introduced earlier, 

and 

These symmetries correspond to cases in which the sine-wave directions are 
oriented symmetrically about the axis parallel to and normal to the scan lines, 
respectively. 

Experimental measurements show that the contours of constant sine-wave 
response are regular and convex for the systems examined. They will be assumed 
to be ellipses with major and minor axes along the principal Cartesian axes defined 
above. This orientation of the major and minor axes is dictated by the symmetry 
properties of the sine-wave response function. In this case, therefore, only the 
response characteristics parallel and normal to the scan lines need be determined. 
Representative curves for the Ranger cameras can be found in Figs. 9 through 12. 

It is pointed out that these curves are approximated rather well for analytic 
purposes by Gaussian functions of the form 

where the u- and v-axes will be chosen to be parallel and normal to the scan 
lines, respectively. 

The phase-shift portion of the sine-wave response function is much more 
difficult to measure. The main reason for this is that the amplitude portion of 
the response function is quite small compared with the noise for frequencies at 
which the phase shift becomes significant compared to geometric distortion. 
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Fig. 12. Ranger VI1 partial-scan camera sine-wave 
response (normal to scan lines) 

Thus, the phase portion of the sine-wave response function will be considered 
constant over the region where the amplitude part makes significant contributions. 
In this case, Eq. (8) gives the complete system sine-wave response function. 

Thus, with the transfer function constants t,, and a and the Gaussian widths 
U" and U" determined from system calibration data, Eq. (6) or (7) can be used to 
predict the system response t ( 5 , ~ )  to any nonuniform object scene luminance 
b (u, v ) .  The truth of this statement is, of course, predicated on the accuracy with 
which linear system analysis can be applied to describe the system. 

As the final part of the system description, there remains the inherent noise in 
the output film facsimile, which will tend to obscure detail in the reproduction. 
Virtually all components of the system contribute to the final noise level, as for 
example, the camera electronics, the telemetry process, the ground processing 
electronics, the output kinescope face, and the grain structure of the output trans- 
parency. A detailed study of the propagation of noise from the various compo- 
nents through the system to the output, taking into account the local statistics 
of noise generation and the transfer characteristics between various intermediate 
components all as a function of pertinent system parameters and environmental 
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conditions, would be somewhat formidable. Some measurements have in fact 
been performed on typical Ranger systems, with the result that the output elec- 
trical noise spectrum is found not to be simple but to exhibit rising and falling 
characteristics in various portions of the 200-k~ overall system bandwidth. These 
complications are due to the spectral shaping characteristics of various system 
components needed to give a uniform spectral response over the 200-kc band- 
width to the input vidicon signals. Since the noise introduced at various points 
throughout the system can in general be considered “white,” the output noise 
spectrum is other than white, having been distorted by the shaping spectra. In 
addition, the inclusion of telemetry noise (although a small factor here), with its 
triangular noise spectrum rising with frequency, further complicates the output 
electrical noise spectrum. It is noted that the noise spectnini is fairly flat at low 
frequencies ( 1 8  kc) and rises for higher frequencies out to 200 kc. The film 
recording process has a falling sine-wave response function essentially for all 
spatial frequencies. This falling characteristic will tend to offset the rising elec- 
trical noise characteristic and make the assumption of a white-noise spectrum 
more realistic. Furthermore, the grain noise in the film has a spectral distribution 
that generally falls with increasing spatial frequency, thereby again weighting 
the low-frequency end of the spectrum and offsetting the electrical spectrum. For 
these reasons (although no experimental verification has yet hecm performed), to 
obtain a good first approximation, and for mathematical simplicity, the noise 
spectrum in the output film will be taken as flat in spatial frequency and inde- 
pendent of direction. This excludes the scan-line structure, which is very direc- 
tional and periodic but which intist be considered as a typc of noisc, if the pictures 
are greatly affected by its presence. For the Rangcr system, however, there is 
considerable scan-line overlap, so that the effects of the scan lines are assumed 
to be negligible. 

In the output transparency, the noise manifests itself as transmission fluctua- 
tions about some mean transmission value. The amplitude of these fluctuations 
certainly depends upon the mean transmission value, since neither a very dense 
nor a very transparent piece of film exhibits much noise, whereas intermediately 
exposed films have considerable noise levels. The amplitude of such noise can be 
incasrired with a scanning microphotometer as described bclow. 

In Appendix C, the relationship between the rms noise of interest here and the 
output of a micropliotometer is discussed in detail. Only the results specialized to 
the above assumptions will be quoted. Let t ([, 7)  be the noisy reproduction of a 
spatially uniform input luminance distribution, so that 

whcre t ,  is thc mcwi trmsmission and t ,  ([, 7 )  is the white-noise term with zero 
average. If thc assrimcd whitc~-noise spectrum of amplitude TY, )  ( t , )  is spatially 
filtcrcd hy a tlwicc. witli a spcctral response F (k6, k,), t ,  ([, 7, F ) ,  the filtered noise 
distrihution, can 1)c writtcm in its Fourier representation using Eq. (C-2) ,  as 

where + ( k * , k , )  is a real random variable for all ke and k ,  uniformly distributed 
over 2 ~ .  Then, if ( ) denotes 3 spatial average Over the \vIiole output distribution, 
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The white-noise spectrum amplitude, T,, (tl), is then determined with a micro- 
photometer, as follows. For a square scanning aperture of dimension d, if to (.) is 
the time-dependent output of the microphotometer scanning the white-noise dis- 
tribution, Appendix C shows the rms noise fluctuation about the mean, (G)rms, 
to be given by (( ) denote an average over time here) 

Solving for T:.,, (ti), 

Finally, combining Eqs. (10) and (ll),  the rms film noise after arbitrary spatial 
filtering (ultimately by an observer) is shown to be 

Thus, having determined the amplitude T,, (t,) of the white-noise spectrum, one 
can find, using Eq. (12), the rms noise level after any arbitrary filtering. The quantity 
(tt.)r,ns d , measured by the microphotometer, is plotted as a function of the mean 
transmission t ,  in Fig. 13 for a typical Ranger system. 

E 
- -- I - 

N 81 I I I I I 
I I 

0 J 
0 20 40 60 80 100 120 

MEAN TRANSMISSION, % 

Fig. 13. Measured output film noise 

The linear system analysis presented earlier, together with the above noise 
considerations, provides a unified and attractive description of the system. The 
justification for using linear system analysis and, in particular, for using sine 
waves as the characteristic functions of the system, rests entirely on "small signal" 
arguments. Whereas the rigor of such an approach may be questioned, it is felt 
that it offers at least a reasonable approximation to actual system performance. 
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D. Image Blur 
Image blur has two basic origins within the system; namely, lack of focus, 

both electronic and optical, and relative motion between the camera and the 
object being viewed. For the present, perfect focus will be assumed throughout 
the system, so that only image motion need be considered. The effect of image 
motion on the detectability of a resolution element lies in the resulting contrast 
reduction. This can be simply described within the framework of linear system 
analysis as a modification to the system sine-wave response function, as follows. 

A h  A 
Fig. 14. lens-centered coordinate system (u, v, w) 

Let a lens-centered Coordinate system be a right-handed Cartesian system with 
coordinates (u, v ,  w )  having their origin at the center of the lens, which is taken 
to lie in the uv-plane (see Fig. 14). Further, let ro be the position vector of a point 0 
in the camera’s field of view, and let r, be the position vector of its image I. Note 
that a unit vector set (u,v, w) = (u,v,n,) will be taken along the principal 
Cartesian directions, where Sa is the unit vector along the optical axis 
introduced earlier in the discussion of the Moon-centered coordinate system. 
If it is assumed that the object point 0 is at a great distance from the lens com- 
pared with its focal length F, that is, if ro .f;, > > F, then, from Eq. (A-1) in 
Appendix A, one has 

A b  A A A h  

Upon straightforward differentiation with respect to time, the velocity u, = dr,/dT 
of the image point I is written in terms of the relative velocity uo = dr,/dr of the 
object point 0 with respect to the camera as 

F ^na X (:o X u,) 
0, = 7 A ro*na ro*f;a 

where the vector identity A X (B X C) = B (A C) - C (A B) has been used for 
arbitrary vectors A, B, and C. 

From Eq. (13), it is noted that the image velocity u, is not a constant over the 
image plane even for constant relative velocity u,. The vector changes not only 
in magnitude but also in direction over the image plane. Thus, strictly speaking, a 
sine wave cannot be imaged as a simple sine wave under these conditions. To see 
the actual result, consider the following calculation. 
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Let a sine-wave test target of spatial frequency k be placed normal to the 
optical axis n̂, of a camera system. Given a coordinate system in the plane of this 
target, let the luminance distribution b ( x )  of the sine wave be 

b ( x ) =  b ,exp[ i (k*x+ +)] 

where bo and + are constants and x is a position vector in the plane. Now, the 
problem is to calculate the time-averaged flux density distribution at the image 
plane if the camera system is moving with velocity uo with respect to the sine- 
wave target. From Eq. (5), the flux density at the image plane of the camera is 
proportional to the object luminance and is independent of the object distance. 
(It is assumed that the object is close enough to the optical axis to make the cos4 
vignetting factor essentially constant.) Consider a point on the sine-wave target 
with position vector ro in the camera lens-centered coordinate system and xo 
in the target-plane coordinate system at time T = 0. At time T ,  the position 
vectors r and x, locating the point in the sine-wave target which is imaged at the 
same point in the image plane as that at T = 0, are given by (see Fig. 15) 

and 

x = xo - r,, + U ~ T  + r 

Thus, the time-integrated flux density dQ,/dA’ at the image point of interest 
is given by 

where the derivation leading to Eq. (5 )  has been used and C represents the con- 
stants in that equation. So, one has 

Now, the effective spatial filter due to image motion, G,, (r, k), is defined such that 

-- dQ - C b , , S ~ G , ( ? , k ) e x p [ i ( k * x +  +)] 
dA‘ 

where the position vector x is evaluated from Eq. (14) at time T = T , ) ,  the start 
of the shutter cycle. Substituting Eq. (14) in Eq. (15), one has for the motion filter 

Applying Eq. (13) to the present geometry, the image velocity u, at time T becomes 

F Ga x (;,, x u,) 
= A A A A  ro n, - uo n,T  r,, * n, 
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independent of time, the image motion filter becomes 

It is pointed out that G,,, is not constant over the image plane even though the 
relative velocity vector uo is. This arises from the form of Eq. (13), where it is 
evident that the image velocity ul at any point in the image plane depends upon 
the direction of the position vector to that point. For the present purposes, how- 
ever, since only small objects are of importance, it will be assumed that the points 
of interest in the image plane have position vectors with essentially the same 
direction. For these points, the velocity vector is almost constant, and Eq. (16) 
represents a well defined spatial filter. Note that this assumption is consistent 
with assuming a small enough field of view so that the cos‘ vignetting factor in 
Eq. (5) is essentially constant. Thus, the image motion filter is well defined but 
is a function of the position of the small object of interest in the camera’s field of 
view. In addition, the orientation of this velocity with respect to the television 
scan lines is a variable over the image plane, particularly if the relative velocity 
vector is contained in the field of view. This is quite likely for a nominal approach, 
since that configuration usually turns out to give the best resolution. Thus, the 
direction of the velocity u1 in Eq. (16) will be considered a random variable uni- 
formly distributed over 360 deg. A meaningfully representative figure of merit 
is assumed to result from an average over the direction of the image velocity. 

With the above assumptions, then, the effects of image motion on the threshold 
detectability of a resolution element can be included in a unified manner within 
the framework of linear system analysis. 

E. Human Observer 
Ultimately, the output facsimiles of the system must be presented to a human 

observer, who determines what information is in the picture. As mentioned earlier, 
the prime requisite for information perception is the detection of coherent detail 
in the system noise, which presumably requires some threshold signal-to-noise 
ratio. The detection process is most conveniently considered as a spatial filtering 
process. This, of course, assumes that the observer acts as a linear operator, but 
there is no real way to test whether he satisfies the necessary postulates (see 
Appendix C). Simply accepting this assumption, though, attempts have been made 
to measure the visual sine-wave response function under particular conditions, 
with the general result that an observer is found to act as a low-pass filter (Ref. 6). 
The detailed cutoff in absolute units of cycles per length must be a function of 
viewing geometry and the mental state of the observer. If he is allowed the 
freedom, an observer will alter the viewing conditions to optimize his visual output 
according to some criterion. This criterion must depend upon the task the observer 
is trying to perform, since the optimal configuration for correlation or interpreting 
detail over a large photograph would likely be different from that for detecting 
the smallest detail in a particular area. The effects of such optimization procedures 
are certainly significant in the interpretability of photographic information, SO 

that an attempt to include them in a mathematical model must be made. Since the 
interest here lies in minimal detection capabilities of small detail in system noise, 
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it is reasonable to assume that the optimization criterion in this case is to maximize 
the signal-to-noise ratio of the visual output. 

This observer function can be formulated mathematically as follows. Let the 
transmission distribution t ( f ,  7)  presented to an observer have a spectral distribu- 
tion T (kc, k,) and let the superimposed transmission noise have a spectral dis- 
tribution T , ( k , ~ , k , ) .  Then, if the observer acts as a spatial filter with spectral 
distribution Go (kc, k,), his visual output-signal to rms-noise ratio, S / N  (t, v), is 
given by 

(Note that the signals perceived by the observer are really in terms of luminances, 
but this represents only a multiplicative constant for both numerator and denom- 
inator in the S / N  expression in terms of transmission and so divides out.) Here, 
of course, it is assumed that the observer acts as a linear operator. The signal-to- 
noise ratio in Eq. (17) has a maximum, S / N  I ,,, at some point (&, 7,)).  The observer 
then changes Go (kc, k,) until S / N  1 ,, is maximized. 

Now, the question arises as to within what limits the observer can change his 
spatial filter characteristics. In this regard, two possibilities immediately come to 
mind. The first is that the functional form of GO(k[ ,k , )  is altered to optimize 
S / N  I o. This case corresponds to the familiar “optimum filter” techniques of radar 
and communication theory, in which Schwarz’s inequality is used to determine 
the functional form of Go (kt, k,) necessary to optimize S / N  I It turns out that 

where C is a real constant and it i s  assumed that T ,  (kt, k,) is nowhere zero. From 
Eq. (18) one notes that if the noise spectrum falls off fast enough for high fre- 
quencies, the observer filter must have a rising response characteristic. It would 
seem unreasonable to assign an observer such versatility. 

A second and simpler, although less sophisticated, observer formulation is to 
let G,, (kc ,k , )  be a low-pass filter such as a Gaussian, with a variable width 
parameter. In this case, the functional form of the filter stays fixed, but one or 
more parameters, such as the cutoff frequency, can be varied by such a simple 
maneuver as moving closcr to or farther away from the picture. This formulation 
seems intuitively attractive and is consistent with measurements made to deter- 
mine the sine-wavc rcyonsc function of the human observer. The optimization 
procedure for thc obscrvcr is then to vary the allowed parametcrs until S / N  I ,, is 
maximized. In this case, thc observer filter G0(k t ,k , )  will be assumed in some 
first approximation to be a Garissian with width parameter u,, and height GO,!, 
so that 

(19) 1 GO (kc,  k,) 1 Goo exp 
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Then, if the noise spectrum T, (k< ,k , )  is assumed to be white with amplitude 
Tyo, so that 

T N  (ks, k,) = T A T O  

one has for Eq. (17) 

Given T (kc, k,) from the Fourier transform of Eq. (6), one calculates the numera- 
tor of Eq. (21) and maximizes the result with respect to Q. This is then the 
optimum signal-to-noise ratio S / N  I ,,,ax as seen by the observer. 

This S / N  I represents the largest signal-to-noise ratio obtainable by the 
observer from looking at a resolution element and is used to determine the mini- 
mum detectable resolution-element size and, hence, the figure of merit. Note that 
again the effects of a system element, in this case the observer, are consistently 
included in the present scheme of analysis only to the extent that the element 
acts as a linear operator. 

F. Summary 
The results of the foregoing paragraphs constitute in some approximation a 

mathematical model of the complete system from input to observer, including all 
of the major degrading influences. All of these factors are included in a unified 
manner through linear system analysis and in particular through two-dimensional 
Fourier transform theory. In light of this, then, the major determining factor of 
the accuracy of the approximation is the degree of linearity of the system over the 
dynamic range under consideration. Since rather low-contrast object scenes are 
expected because of the lunar photometric properties, it is felt that at least local 
linearity of the transfer function over the luminance values found in such a scene 
is not an unreasonable assumption. Granted the linearity assumption, the model 
would seem to be a unified and accurate description of the effects of the various 
parts and aspects of the system upon its ultimate resolution capabilities. To be 
sure, a verification of the accuracy of the magnitudes of the numbers coming out 
of a calculation of the figure of merit requires extensive experimentation; such 
studies are underway. On the other hand, the relative magnitude of the figure 
of merit as a function of position on the lunar surface gives a reasonably mean- 
ingful measure of relative resolution and provides a useful criterion for choosing 
impact points for the Ranger vehicle, since it reaches a minimum value at 
some point. 
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IV. THE CALCULATION: PROCEDURE AND DETAILS 

The application of the mathematical machinery described in Section I11 to 
the calculation of the figure of merit from its definition is straightforward even 
if somewhat involved. The general outline of the calculation appears below, 
followed by the mathematical details. The results from the preceding text and the 
Appendixes are freely drawn upon. 

A. Generul Procedure 
Assumed to be given are a specific orbital approach configuration as indicated 

in Fig. 1, the lunar reflectance characteristics as given in Fig. 4, and the television 
system characteristics. These latter characteristics include the system transfer 
and sine-wave response functions, the noise spectrum, and the geometrical param- 
eters such as focal length, field of view, and output format size. 

The first step in the calculation is to determine the contrasts between two 
resolution elements and the background surface, where one contrast is repre- 
sentative of areas brighter than the background and the other of areas darker 
than the background. Each is determined by averaging the surface-to-background 
luminance difference over the appropriate portion of the image of a cone and any 
shadow it throws. The surface of the cone is assumed to have the same photo- 
metric properties as the Moon, and the base angle of the cone is a constant for 
the calculation, nominally equal to 15 deg. The average is obtained for erect 
(apex up) as well as inverted (apex down) cones to include the effects of both 
depression- and protrusion-type features. The weighting function for the average 
is the size of an area element on the surface of the object cone after projection 
through the camera optics to the image plane of the vidicon. 

Given these contrasts, the output transmission distribution for each resolution 
element is determined as a function of element size. This is accomplished by treat- 
ing the system as linear and using Fourier analysis. Under this formalism, the 
degrading influences such as the television process, system optics, and image motion 
are treated in a unified manner as spatial filters. 

Finally, knowing the output transmission distributions for both resolution 
elements, along with the output noise power spectrum, the masimum signal-to- 
rrns noise ratio at a human observer’s visual output is determined within the linear 
systcm scheme by assuming the observer to act as a variable-width low-pass 
spatial filter. This width is adjusted to optimize the output signal-to-noise ratio 
for each of the resolution vlenients. Then, using the condition for threshold 
detectability of the elemcmts, one sets these optimum signal-to-noise ratios equal 
to 3, thereby determining the threshold-detectable resolution-elenient sizes, which 
are the only varinblrs rcmaining in the problem. The reciprocal of the figure of 
merit is then takcw to be thc silm of t\lc> reciprocals of the cone diameters corre- 
sponding to thc threshold ri,solution-elelllent sizes. 

B. Calculation Details 
The contrast averaging for the resolution elements is done using the lunar 

reflectance function and the imaging and viewing geometry. The pertinent geom- 
etry is summarized below; the detailed derivations are omitted. Consider the case 
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2 

X J 
Fig. 16. Upright-cone geometry 

of the upright cone first (see Fig. 16). Let the cone have a base of radius r and a 
height h, so that the half apex angle ,8 is given by 

1’ % 
t a n p = - ,  O < p < ,  h 

Let a Cartesian coordinate system be located such that the z‘-axis is along the 
cone’s axis, and the base is in the x’y’-plane. Let theAx’-axis be in the plane deter- 
mined by the 2’-axis and the Moon-Sun direKtion R.ws, with the positixe x‘-axis 
opposite to the direction of the component of R, ,  in the x’y’-plane. Let RMs make 
an angle y with the 2‘-axis, and let + be an azimuth angle in the x’y’-plane 
measured from the positive xf-axis. Now, for the contrasi averaging, an area ele- 
ment AA about a generator of the cone and with normal N can be written in terms 
of the azimuth-angle increment A$ as 

1 r:! 

The corresponding element AA,,, of the shadow area (assuming there is one) is 

(23) 
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Note here that for a meaningful result, one must have 

tan p tan p 
tan 7 tan y 

- cos1 - < $ < cos-’- 

which simply means that the shadow area ends for $ = $s l l  = &cos-’ (tan p/tan y ) .  
Note further that t,b812 has meaning only for y h p, which is the requirement for 
a shadow to exist a t  all. The above considerations assume that the observer can 
see all parts of the cone and shadow. That is, there is no “visual” shadow. This is 
generally the case with the Ranger impacting probe or the fly-by mission, but the 
more general projection case can be worked out with somewhat more complication. 

So, given the normal N to the area element AA (Thich is easily written as a func- 
tion of the azimuth $), the illumination direction RMs, and the observing camera 
look direction, the photometric geometry is easily worked out using Eqs. (2) and 
(3), so that the cone luminance is obtained from Fig. 4 as a function of $. The 
shadow luminance is zero (neglecting multiple reflections and Earth and star 
shine), and the background luminance is obtained similarly to that of the cone 
by noting that the background normal is simply 2’ in this coordinate system. Thus, 
the average luminances about the upright cone above and below the background 
luminance are easily computed by choosing a suitably small A$ and stepping 
$ over 360 deg. The projected area elements are given by Eq. (A-11), where the 
necessary vectors are easily obtained from the viewing geometry. 

A 

The geometry and averaging are done similarly for the inverted cone, as sum- 
marized below. Let a coordinate system be defined for the inverted cone similar 
to that for the upright cone, as shown in Fig. 17. The only real difference, aside 
from the inversion of the cone, is the fact that the positive x’-axis is in the same 
direction as the component o,f RMs in the x’y‘-plane. Again, there is a shadow pro- 
duced if the colatitude y of RMs is greater than the colatitude p of the generators 
of the cone. The endpoints of the shadow are given in terms of the azimuth 1 ~ ,  as 

NOW, assuming that a shadow exists for 

tan p tan ,8 
tan y tan y 

- cos-] - < $ < cos-’ - 

the lateral area element AA,?,, is all shadow, so that 

1 r2 tan p tan p 
2 sinp tan y tan y 

AA,, = - - A$; -cos-’- < IC, < cos-L- 

For $ in the rest of the circle, the lateral area element is partly lit and partly 
shadow (assuming that there is a shadow). The shadow part, nAnhr is given by 

tan ,8 tan p 
tan y tan y 

< $ < 2T - cos-1 - cos-’ - 
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Fig. 17. Inverted-cone geometry 

and the lit portion, AA, is given by 

sin2 + + tan' + s h  (1 + cos + COS + s h ) ]  

(4 sin' + + sin' tan' qS,,)' A n - - -  - sin ,8 

tan ,8 tan p 
tan y tan y 

cos-' - < + < 2n - cos-' - 

Note that here again, it has been assumed that the whole interior of the inverted 
cone is visible to the observer, and the other case is similarly calculable. The 
averaging in this case is done just as before over those portions of the cone lighter 
and thosc darker than the background. Note also that all of the area elements in 
Eqs. (22) through (26) are proportional to the radius of the cone squared, making 
this factor unimportant in the averaging. Hence, the average contrasts depend 
only on the angular geometry, as must be the case, and not on the cone size. 

Thus, given the light and dark contrast averages over the erect and inverted 
cones, the final contrasts to be used for the resolution elements are obtained by 
averaging the two light contrasts, using the total projected light areas for the two 
cases as weighting functions, and the dark areas for the dark contrasts. 

The next step is to calculate the output transmission distributions for the two 
resolution elements as a function of size. Only the case of the light element is 
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considered, as that of the dark element is completely analogous. According to 
the earlier discussion of the television system, the form of the transfer function 
for a uniform input luminance is 

t = t,, + ab (27) 

where t is the output transmission, to and a are transfer constants, and b is the 
uniform scene luminance. The assumption of transfer linearity is taken to be a 
good approximation for small changes in the luminance b, such as from the back- 
ground luminance b, to the light resolution-element luminance bL. The constant 
t,, is unimportant here, since only output transmission differences are considered. 
The constant a is the transfer slope and is taken to be the average slope of the 
transfer curve (see Figs. 7 and 8) between the luminances b, and b,. Then, from 
Eq. (6) ,  and using the subsequent treatment of image motion, the transmission 
distribution t ([, 7)  at  the film output is 

where B (k",  k , )  is the Fourier transform of the input luminance distribution, 
C (k", k,) is the system sine-wave response (see Eq. S), and G,,, (ku, kv)  is the 
effective image-motion filter (see Eq. 16). It should be noted that the output 
coordinates ( 6 , ~ )  are functions of the vidicon coordinates ( u , v ) .  For the present 
purposes, distortion will be neglected, and it will be assumed that the relation 
involves only linear magnification by a factor p, so that 

([>7) = (P% P V )  (29) 
In similar fashion, the output spatial frequencies ( k t ,  k , )  corresponding to ( k u ,  k v )  
are given by 

Equation (28) is written completely in terms of the output coordinates as 

This is the transmission distribution seen by the observer. (Note that actually the 
observer sees a luminance distribution, but this differs from the transmission dis- 
tribution only by a constant. Since the signal-to-noise ratio is of importance here, 
and since the noise luminance and transmission distributions are related by the 
same constant, the constant divides out, and so luminance and transmission can be 
considcred synonymous.) To include the effects of the observer on the output 
signal-to-noise ratio, one needs the Fourier transform T (ke,  k,) of the transmission 
distribution in Eq. (31). This transform is readily obtained as 

'I' ( k t ,  k,) = to 8 ( k t )  8 (k,) + pLa B (&, pkq) G (pk t ,  $7) Cm ( c ~ k t ,  $ 7 )  (32) 
where 6 (x) is the familiar Dirac delta function having the Fourier representation 

8 (x) = - d y  exp ( ixy )  2y: 
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Consider now the input luminance distribution b (u, v )  due to a resolution ele- 
ment displayed against a uniform background and its Fourier transform B (ku,  kv ) .  
By definition, a resolution element is a square on the surface of the Moon in the 
camera's field of view, so that its shape on the vidicon face is the imaged projec- 
tion of the square. For simplicity, the image will be assumed to be a rectangle 
whose sides are in the ratio of the minor and major axes of the image ellipse of a 
circle placed at the center of the field of view on the lunar surface. This ratio, K ,  

is obviously just the cosine of the angle between the 2ptical axis and the surface 
normal. If n, is a unit vector along the optical axis and N is the unit surface normal, 
one has 

Thus, the input luminance distribution b ( u ,  v )  for the light resolution element as 
a function of its size 1, on the vidicon face is given by 

1, 11 1, 1, 
bL; 

bo; otherwise 

- -< u < -and - K  - < v < b (LJ, v )  = 2 2 2 (34) 

Note here that an orientation with sides parallel and normal to the scan lines, 
respectively, has been chosen for simplicity. The Fourier transform, B (k", kv) ,  of 
this distribution is calculated as 

or 

In calculating the output signal-to-noise ratio, one wants to consider only trans- 
mission changes above a constant background. The delta function terms in both 
Eq. (32) and Eq. (35) give rise to constant background terms and so will be 
neglected. Thus, the signal portion B, (k", kV) is given by 

or 

From Eq. ( B ) ,  the sine-wave response function G (k", kV) is given by 
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and, making the substitution t‘ = t - &/2, one has 

It is easily shown that the maximum of this function occurs at the point 

“5 87 
( t o ,  r]”)  = (- - 2 ’  - *) 2 

so that the spatially maximized signal So is given by 

(Note also the symmetry of the integrand.) This integral cannot in general be 
written in closed form as is desirable for further manipulation. For the special 
case of one of the velocities being zero, it can be done, however. For example, 
letting v7 = 0 and v5 = v ,  one has 

where the integral 

1 
erfxdx = xerfx + - exp ( -x2) 

fi 
has been used. The case in which = 0 and v7 = v is easily written down by 
inspection. This assumption of having the image velocity in the cardinal Cartesian 
directions of the scanning raster is justified only by the ensuing simplicity, but it 
will be assumed that a representative resolution measure results from averaging 
the respective calculations for these two cases. 

Then, assuming a white-noise spectrum for the system (the case of a shaped 
noise spectrum follows readily in principle from the foregoing formalism), the rms 
transmission noise (tN)rms at the observer’s output is given by 

where Eqs. (12) and (19) have been used. Note that the quantity (%.).),,,d/2n is 
the noise power-spectrum amplitude a$ measured by a microphotometer and that 
expression (42) gives the rms noise amplitude after the white noise has been 
altered by the observer’s effective spatial filter. 
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Thus, dividing Eq. (41) by Eq. (42), one obtains the spatially maximized signal- 
to-noise ratio S / N I o  at the observer’s output as 

The symbols in Eq. (43) are summarized as follows: 

a 

b ,  

the transfer-function slope (see Eq. 27) 

the average luminance of the portion of the cone lighter than 
the background (this becomes b,, for the dark element) 

b,, the uniform background luminance 

(t‘;,),.,,,,d/2~ the noise power-spectrum amplitude as measured by a micro- 
photometer with a square scanning aperture of dimension d 
(see Eq. 11) 

the image velocity on the output film (see Eq. 38) u 

8s the exposure time 

ut, u,, the sine-wave response-function “widths” at the output film 
(see Eqs. 8 and 38) 

the observer spatial filter “width” at the output film (see Eq. 19) u~, 

1 1  - 1 1 1  1 - -- -+-,,+- zg ’ 2; ug Uf) uc Uf) 

K the ratio between the sides of the image of the square resolution 
element (see Eq. 33) 

the side lengths of the resolution-element image at the output 
film (see Eq. 38) 

the magnification factor between the vidicon face and the output 
film (see Eq. 29) 

I , K ~  

p 

To get the maximum signal-to-noise ratio S / N  I nlB)L, Eq. (43) must be maximized 
with respect to the observer’s spatial filter width go. This optimum ufj is obviously 
going to be a function of the resolution-element dimension 1. And since the mini- 
mum detectable I is obtained by requiring S I N  1 to be equal to 3, this dimension 
will also be a function of u0. So, the following set of siniultancous equations results: 
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These expressions are straightforwardly evaluated using Eq. (43) to give 

and 

1 - {$+ [ (u Br + I) erj 3- ( v  6s + 1) - (v Br - 1)  e$* (v BT - 1) 
2 v  2 v  

82 K 8 q 1  + exp [ - (v  87 + 1)2] - exp [ - - (v 87 - z)Z]} e$ - = o 
8 2.V 2 

The simplified case of no image motion (o = 0) is somewhat simpler and can be 
shown to give 

and 

as the set of simultaneous equations. The appropriate set is solved simultaneously 
to obtain uO and I for the threshold-detectable resolution element. The element 
dimension I is the only quantity of importance for obtaining the figure of merit. 
Remembering, however, the special resolution-element orientation and image- 
velocity direction used in the preceding calculation, note that a truly representative 
element dimension should include an average over the other orientations. Such 
an average is justified for the velocity direction, since its direction changes over 
the image plane (see Eq. 13). For the other average, since the element is to be 
representative of images of actual features, the details of the feature outside of 
contrast are not of importance, so that such an average is desired. Then, because 
of the major simplifications resulting from choosing cardinal direction orientations 
for the image-velocity and element sides, a reasonable average will be assumed to 
result from averaging only over these two directions. Thus, letting v[ ,  vI ,  15, and C, 
represent the velocity and element side components in the cardinal directions, the 
average resolution-element dimension for threshold detection la,, is defined as 
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The figure of merit is then determined simply by scaling the diameter of the object 
cone used for calculating the contrast averages, so that the average image area for 
conical depressions and protrusions lighter than the background has the same area 
as the average threshold-detectable resolution element &. The diameter DL thus 
obtained is the figure of merit for the lighter-than-background object. 

A similar procedure is followed for the portion of the object cone which is 
darker than the background, so that one gets a diameter DI, for the threshold- 
detectable cone due to dark-area and shadow distributions. The final figure of 
merit is a combination of these, attempting to take into account the interaction 
between the light and dark portions. That is, a light and dark resolution-element 
pair is more easily detected than either an isolated light or dark element. On 
the other hand, if the threshold-detectable cone diameter due to lighter-than- 
background portions is much larger than that for dark portions, the threshold 
detection will take place primarily on the basis of dark portions. In the opposite 

NOTE: NO TERMINAL MANEUVER 
30° BASE ANGLE FEATURE, 

FRAME TIME 3.84 sec BEFORE 
IMPACT, S/N RATIO= 3.0 

Fig. 18. Ranger VI1 preflight analysis, A-camera figure-of-merit contours 
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case, threshold detection will be based on the light portions. For these reasons, the 
final figure of merit or threshold-detectable cone diameter D (of given base angle) 
will be taken to be given by 

where again DL and DD are the diameters of the threshold-detectable cones solely 
on the basis of lighter-than-background and darker-than-background areas. 

Contours of constant figure of merit are shown as a function of impact point 
for two Ranger cameras and for a typical arrival geometry in Figs. 18 and 19. It 
will be noted that the figure of merit does indeed reach a minimum at some point 
on the lunar surface, indicating for the particular geometry and surface conditions 
assumed the optimum impact point from the point of view of best resolution. 

NOTE: NO TERMINAL MANEUVER, 
30° BASE ANGLE FEATURE, 

FRAME TIME 3.84 sec BEFORE 
IMPACT, S/N RATIO=3.0 

Fig. 19. Ranger VI1 preflight analysis, B-camera figure-of-merit contours 
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V. CONCLUSIONS: FIGURE OF MERIT VERSUS 
CONVENTIONAL RESOLUTION 

The question naturally arises as to why one should use the present figure of 
merit rather than the more conventional measures of resolution. Normally, resolu- 
tion for systems such as that aboard the Ranger is defined in terms of the ability 
of an observer to distinguish a series of light and dark bars after processing 
through the system involved. Usually, the object bars are of fixed contrast which 
is quite high. In  light of earlier discussions, this method is seen to be closely related 
to simply determining, at one spatial frequency, the sine-wave response of the 
system, including the observer’s filtering effects on the inherent noise and signal. 
To be sure, such an approach may be quite adequate if one is dealing with a scene 
of fixed contrast and viewing geometry having no image motion or other similar 
degrading effects. Such conditions obviously do  not exist for lunar and planetary 
photographic missions. In particular, the Moon has somewhat unique photometric 
properties, and since object scene contrast is largely determined by the varying 
orientations of relief-feature surfaces, what can be seen in the system reproduc- 
tions is intimately a function of the surface photometry and viewing geometry. 
Furthermore, since the system is carried on a spacecraft traveling at high velocity, 
the degradation due to image motion can be significant and also depends on the 
viewing geometry. Finally, the problem inherent in directing space probes is to 
choose a trajectory from which pictures with a maximum of information will be 
obtained. Conventional resolution criteria, which obviously do  not account for the 
random physical properties of the scene, cannot give a rational approach to such 
problems nor even aid in their solution. Hence, the figure of merit. 

This Report has discussed the application of a unified formalism to the solution 
of the above problems. Within the framework of linear system analysis, a reason- 
able approach for describing the effects of the expected low-contrast scenes, the 
viewing geometry, the surface photometry, the inherent facsimile system charac- 
teristics, the degrading influences such as image motion and system noise, and 
the capabilities of the human observer have been combined to give a single 
number or figure of merit characterizing the system resolution capabilities. 

Even acknowledging the approximation inherent in the quantitative description 
of such a complicated system, it is felt that the figure of merit is a superior and far 
more versatile measure of system resolution capabilities than the conventional 
method, particularly in applications to complex random scenes. Obviously, if the 
effects of variable viewing geometry and photometry and image motion are re- 
moved, the figure of merit is comparable in meaning to the more conventional 
resolution definitions. Since this is not the case in space applications, the inclusion 
of these other effects is essential to a complete and unified description of the capa- 
bilities of a system. Thus, the figure of merit may be thought of as a unified 
gcmcralization of conventional resolution-measuring criteria. The conventional 
approach has its placcl in engineering eva]L1:ltions and comparison of various SYS- 
tems, but in applications to lunar and planetary photography, the figure of merit 
offers a more rational and complete resolution measure. 
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NOMENCLATURE 

uniform field transfer-function slope 

unit vector normal to plane containing incidence and emis- 
sion directions 

area of lens 

average luminance of portion of a cone darker than back- 
ground 

average luminance of portion of a cone lighter than back- 
ground 

vidicon luminance of object surface 

brightness of surface, ft-L 

object scene luminance in photovisual unit system 

Fourier transform of b ( u ,  v )  

signal portion of luminance and transmission distributions 

a constant 

vidicon luminous flux per area 

effective cone diameter of figure of merit value 

minimum detectable cone diameters from light and dark 
criteria 

reflected light-emission angle to camera 

solar constant, ft-L 

spectral sensitivity of standard human observer 

vidicon spectral-response function 

lens f-number 

lens focal length 

spectral distribution of an arbitrary spatial filter 

phase angle (angle between incidence direction and emis- 
sion direction) 

system sine-wave response function at each point ( u , v )  in 
image plane 

effective spatial filter due to image motion 

observer spatial-filter spectrum 

parameters characterizing observer spatial filter 

height of observed right-circular cone 

spectral irradiance of a photoconductive surface 

sunlight incidence angle 

image of observed point 
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NOMENCLATURE (Cont'd) 

spatial frequency or wave-vector components in appropriate 
coordinate system 

spatial frequency or wave vector of sine wave in image plane 

lengths of sides of resolution-element image on vidicon face 

unit vector along spacecraft camera optical axis 

unit vector from spacecraft camera to point 0 

spectral radiance of 6A in direction of emission ^e 
unit vector normal to 6A 

unit vector normal to spherical lunar surface at point 0 

unit vector along component of N in plane containing inci- 
dence and emission directions 

observed point 

radius of observed right-circular cone 

position of center of 6A in camera lens-centered coordinate 
system 

position vector of image I of point 0 

position vector of point 0 in camera field of view 

unit vector from Moon's center to Sun's center 

observer's visual output signal-to-rms noise ratio 

maximum value of S / N  1 with respect to uO 

spatially maximized value of S / N  ([, 7 )  

output film transmission 

time-dependent output of microphotometer scan of a film 
transparency 

spectral radiant transmittance of lens 

film noise distribution 

average of square of film transmission-noise fluctuation 
about the mean 

average of square of microphotometer output fluctuations 
about the mean while scanning a film transparency with a 
square aperture of side d 

mean transmission of film 

Fourier transform of t ([, 7 )  

transmission-noise spectral distribution 

white-noise spectrum amplitude 

position coordinates in image plane of camera system 

A 
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NOMENCLATURE (Cont'd) 

VI, vo 

VSG 

x ,  Y, 
a 

P 
Y 

velocity of image point and object point, respectively, in 
lens-centered coordinate system 

velocity vector of spacecraft with respect to Moon-centered 
coordinate system 

coordinate system in object space 

luminance longitude 

half apex angle of observed right-circular cone 

acute angle between R,, and axis of observed right-circular 
cone 

small plane area increment in object space 

spectral radiant flux incident on lens from 6A 

Dirac delta function 

exposure time 

lateral area element of a cone 

area element of shadow 

ratio between sides of image of a square resolution element 

linear magnification factor from image coordinate system 
to output coordinate system 

position coordinates in output film 

lunar reflectance function 

Gaussian width of camera sine-wave response 

a real random phase variable 

azimuth angle in x, y cone base coordinate system 

azimuthal boundary of shadow area 

A 
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APPENDIX A 

Summary of Basic Imaging Geometry 

In this Appendix, a review of the basic imaging geometry through simple, thin 
lenses is presented, along with brief derivations, for points, straight line segments, 
and plane areas. Expressions are specifically found for the case in which the 
object being imaged is at a great distance from the lens compared with the lens 
focal length. 

Define a lenscentered coordinate system as a right-handed Cartesian system 
whose xy-plane coincides with the plane of a thin lens and whose origin is at the 
center of the lens (Fig. A-1). Let 2, ?, and ^z be unit vectors along the principal 
Cartesian directions, and let object points for the lens have positive z-coordinates. 

/" 
/ 

4 A 4  
Fig. A-1 . lens-centered coordinate system (x, y,  z) 

Consider the imaging of a single object point. Let an object point 0 have 
position vector r in the lens-centered coordinate system, and let its image 0' 
have a position vector r' (see Fig. A-1). Then, from similar triangles and the usual 
refractive properties of thin lenses, one has 

- F  
re& - F 

r' - r 

where F is the focal length of the lens. If the object distance r ^z is much larger 
than the focal length, expansion of the above expression gives 

r'=---;;r . . . 
r * z  -' ( r - z  " >  

Then, to first order in F/r ^z, 

r'=: - 7 r ;  F r * s > > F  
r - z  

which is the desired result. 

Consider next the imaging of an arbitrary straight line segment in space. In 
the case of distant objects, for a well focused image lying wholly in a plane 
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parallel to the xy-plane of the lens-centered coordinate system, all points of the 
line segment must satisfy the condition r*^z > > F given above for Eq. (A-1). 
With this provision, let the end points of the object line have position vectors rl 
and rz, respectively, and let the corresponding image points have position vectors 
r: and <. From Eq. (A-1), then, 

-F r’ - - 
r, i! r1 1 -  

and 

-F 
r2 z r: = I\ rZ 

Define the vectors rc, R, and R’ as follows: 

1 
re = - (r, + r2) 2 

R = r, - rl a vector along the object line segment 

R’ = r: - r: a vector along the image line segment 

the position vector of the object line segment center 

from which it follows that 

1 
rl = -(2rc 2 - R) 

and 

Thus, the vector R’ is written in terms of the object vectors as 

Substituting Eqs. (A-2) into Eq. (A-3) and collecting terms, one has 

1 rc(R*^z) - R(r,*i?) 
4(r ,0 i?)~  - 

R’ = 4F 

or 

A F z X (r, X R) 

4 (r, 
R’ =-[ - (R*8)2  ] 

(A-3) 

(A-4) 

The condition that all points on the object line segment be very distant from 
the lens compared to its focal length can be written as 
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Thus, expanding the right side of Eq. (A-4) and keeping only first-order terms 
in the small quantities F/r, -^z and I R *"z /2r, 02, one has 

which is the desired result for line segments. 

i 
x 

OPTICAL AXIS 
z 

(A-5) 

Fig. A-2. Object surface configuration 

Next, consider the imaging geometry of an arbitrary plane area for the case in 
which all points of the area are very distant from a lens compared to the focal 
length and in which the area occupies a small but finite portion of the field of 
view. Let the area S lie in a plane P with normal N and have area A, (see 
Fig. A-2). Let a Cartesian coordinate system be defined in the plane P with 
variables 5 and q ,  so that the area A, can be written 

Without repeating the arguments for convergence, this integral can be written 
as the limit of a sum, so that 

v 
A s =  lim I: SAi 

N-rn i = 1  
(A-6) 

where in the Nth approximation, there are N rectangular elements SA{ covering 
the region S. Then, writing SA: and K,, respectively, as the images of SAi and 
A,, one has, assuming proper convergence, 

NOW, to determ@e the image of an infinitesimally small plane rectangle SAi 
with unit normal N, let R, and R, be vectors along the perpendicular sides of 
SAi. Note that IR, 1 and JR, I are the lengths of these sides. Let ri be the position 
vector of the center of SAi, and since 6Ai + 0, ri tends to the position vectors of 
the centers of the sides R, and R,. Because the whole area S is distant from the 
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lens compared with the focal length F, Eq. (A-5) applies, 
R, and R, the vectors R: and RX, where 

giving as the images of 

and 

F A  Rt = - z X (ri X R?) (ri 2)z 

Both SAi and SA: are parallelograms; hence, with the above assumptions, 

SAi = IR, X R?I 

and 

SA: = 1R: X R:J 

Calculating SA:, 

[^z X (ri X R,)] X [z^ X (ri X R,)] 
FZ 

R: X R; - (ri 2)l 

or 

F' 
(ri 2)3 R: X R; = ~ {R, X R, (ri 2) + ri X [$ X (R, X R,)]} 

where the vector identity A X (B X C) = B (A C) - C (A B) for arbitrary vez- 
tors A, B, and C has been used. It is further noted that R, X R, = -t_ I R, X R, 1 N, 
the sign depending on specific orientations but of no consequence. Substituting 
this in the above and expanding and collecting terms, one has 

and finally, 
A 

SA: = FS 171 r i * N  SA, 
ri z) 

Substitution of Eq. (A-8) in Eq. (A-7) gives 

The sum in Eq. (A-9) is approximated follows. Let r, be the position vector 
of the areal ccnter of S .  That is, let 

(A-10) 
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where r is the position vector of the element dtdv.  Then, define Ari such that 
ri = rc + Ari (see Fig. A-2). Since by hypothesis, the area S is everywhere distant 
from the lens compared with the focal length, or 

r,*^z- (Ar, -g l  > > F  foralli 

one has 

A 

keeping only zeroth order in Ari $/rc *;. Furthermore, assume that r i  N is either 
positive for all i or negative for all i, since the surface being imaged can always 
be separated into two parts, each satisfying one of these conditions, and each part 
can be treated separately. Then, Eq. (A-9) can be rewritten as 

or 

and using definition 

which is the desired result, 

(A-11) 
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i (x, y) = [I dk, [I dk, I (k, k,) exp [i (k,x + k,y)l 

1 (kr,  k,) = - ( 2 x ) '  /~dx/ [ :dyi (x ,y)exp[- i (k ,r+k,y) l  --?o 

and 

where it is assumed that both functions exist. The usefulness of such a represen- 
tation is readily apparent upon noting that it is a linear combination of standard 
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I APPENDIX B 

Two-Dimensional linear System Analysis and Application 
to Television Systems 

In this Appendix is considered the extension to two-dimensional systems of 
the familiar Fourier transform treatment of linear one-dimensional systems as, 
for example, the treatment of time-dependent electrical signals passing through 
linear circuitry. The results are then specialized to be applied to scanning tele- 
vision systems. 

Consider a general two-dimensional transfer system in which an input stimulus 
array i (x, y) is processed through the system to a response array r (.$, v ) ,  where 
the coordinate pair ( [ , v )  of the output is some function of the coordinate pair 
(x,y) of the input. The action of the system on the input can be thought of as 
some operation F [ 1, so that for an input i (x, y), the output T ([, 7 )  is given by 

Such a system is said to be linear if for two arbitrary input arrays i, (x, y) and 
i2 (x ,y)  and for arbitrary constants u and b, the outputs corresponding to the 
inputs ai, (x, y) and ui, ( x ,  y)  + bi, (x, y) are given, respectively, by 

(#, 7) = F [ai, ( x ,  y)] = aF [ i ,  (x, y)] 

and 

r (& 7) = F [ai, ( x ,  y) + bi, (x, y) J = aF [i, (x, y)] + bF [i2 (x, y)] 

Obviously, such a linear operation can have a wide variety of forms as, for 
example, forming a simple linear function of the input, differentiating the input, 
or integrating the input. 

In treating such a system analytically, it is most convenient to use a sum or 
integral representation for the arbitrary input to exploit the linearity properties 
to their fullest. As an example and as an obvious first candidate for such a rep- 
resentation, consider the Fourier integral (note that the Fourier series can be 
written as a special case of the integral). The convention will be adopted that the 
function being transformed will be denoted by a lower-case letter and its trans- 
form by an upper case letter. So, if i (x, y) is some input function and 1 (k.z, k,) is 
its Fourier transform, 
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inputs of the form exp [i (k,x + k,y)]. Thus, the action of the linear system oper- 
ator F [ J on the input i ( x ,  y) gives an output r (#, y), where 

or 

having imposed the linearity property of the system. Thus, to specify completely 
the action of the system on any arbitrary input i (x, y) whose Fourier transform 
exists, one need only know its effect on the general two-dimensional sinusoidal 
input exp [i (k,x + k,y)] as a function of the “frequencies” k, and k,. Note that 
the usefulness of an integral expansion lies in the fact that the response of the 
system to an arbitrary input is determined by the response of the system to each 
of a set of standard functions in terms of which the input is written. The set of 
standard functions can be chosen for the convenience of the problem at hand. 

In the application of such a formalism to scanning television systems, obviously 
the major obstacle to overcome is the condition of linearity which must be 
imposed. Overall linearity depends to a very large extent upon the characteristics 
of each individual system being considered and so cannot be accounted for with 
any great generality. In the limit of “small enough input amplitudes, however, 
one can assume linearity in that the system transfer function will have only sig- 
nificant constant and first-derivative terms in its Taylor’s series expansion with 
respect to input amplitude about the mean input level. Note that the term, small 
enough, is tacitly defined in such a way as to guarantee negligible terms in 
higher-order derivatives than the first. 

Assuming, then, that one is in fact dealing with a linear television system,at 
least to some degree of approximation, the above general linear system formalism 
can be specialized as follows. It seems convenient to use the Fourier integral 
representation, so that the standard input function is taken as a spatial sine- 
wave luminance distribution over the field of view of the camera of the form 
exp [i (k,x + k,y)]. The resulting output can be calculated straightforwardly from 
scanning theory, again assuming certain linearity conditions to which the previous 
comments on linearity apply. Such a calculation indicates that the output is a 
sinusoidal distribution with spatial frequencies that are functions of the input 
frequencies but have altered phase and amplitude. This result can be written as 

where ,$ = # ( x ,  y), 7 = 7 ( x ,  y), and the spatial frequencies k, and k, transform to 
kc and k, such that for corresponding points (#, 7) and (x, y), one has 

Furthermore, G (x, y, k,, k,) is the system sine-wave response or modulation trans- 
fer function (in general complex) normalized such that G (x, y, 0,O) = 1 and 
A (x, y) is an amplitude transfer factor independent of frequency. Note that the 
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functions 6 (x, y) and 7 (x, y) can account for geometrical distortions between the 
input and output, and the function A (x, y) G (x, y, k,, k,) can account for response 
nonuniformities and scan-line structure. 

Using Eq. (B-l), then, the response r ( t ,  7) to an input i ( x , y )  which has a 
Fourier transform I (kz, k,) is 

I t  is sometimes convenient to rework Eq. (B-3) in the form of a convolution 
integral. This is readily accomplished with the following manipulations. The 
transform pairs involved are 

J - m  J - m  

and 

Substituting in Eq. (B-3) for these quantities, one has I 
r ( t ,7 ) )  = 4 A(xyy'/" (2,) -?) d k x / P d k , J " d x ' J P d y ' ~ x d u ~ ~ d u i ( x ' ,  - W  -m - P  --La y ' ) g ( x , y , u , v ) e x p [ i k , ( x  - X' - u) 

X exp [ ik ,  (y - y' - v)]  

Thus, noting the familiar representation for the Dirac delta function, I 

this can be rewritten as 

Equation (B-4) can be further reduced in various ways to give four equally valid 
forms for the two-dimensional convolution integral representation for the response 
r (t, 7) in terms of the input i (x, y). One of these is given below, the others being 
trivial permutations: 
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APPENDIX C 

System Noise in the Output Film 

In computing the signal-to-noise ratio in the system output, one needs to know 
the root-mean-square transmission variations about the local mean. This quantity 
is most easily determined experimentally with a scanning microphotometer. Thus, 
in this Appendix, the rms noise in the output transparency is determined in terms 
of the output of a scanning microphotometer. 

Let t (.& 7)  be the noisy reproduction of a spatially uniform input luminance 
distribution, where t ([, 7)  includes the scan-line structure due to the television 
process. In a manner similar to that discussed in Appendix B, t ( f , s )  can be 
written from scanning theory as 

where t, is the base film transmission, s (t, 7) is a function accounting for scan- 
line structure, tl is a constant, and ts (t, ?) is the superimposed transmission noise. 
Note that the spatial averages of s ( [ , v )  and t x ( (5 ,v )  are taken to be 1 and 0, 
respectively, but that the amplitudes of their fluctuations about the averages as 
well as the value of the constant t ,  depend upon the input luminance level. 

If one assigns a spatial frequency distribution T x ( k c , k , ) ,  to the noise portion 
tr ([, v), ta ( 6 , ~ )  can be written in its Fourier representation simply as 

where for all spatial frequencies kc and k,, + ( k c , k , )  is a real random variable 
uniformly distributed over 2 ~ .  It is useful to note certain results of the condition 
that t N ( t , ~ )  is a real function. Namely, if * denotes a complex conjugate, for 
tN (6, 17) = t ;  (t, 71, 

1; dkc /-I dk9 T N  (k.5 k,)  exp {-i [kct + k,7 + 4 (kc, k , ) l }  = /-I dk2 /-, d k ,  TN (kc,  k,) exp { --i [kst  + k917 + 4 (k.5 k,)l 1 

Then, making the transformation kc + - kc and k ,  --f - k,  in the second integral, 
it follows that 

J-m J - m  

for any physically realizable spectral distribution or phase function. So, the desired 
consequences of the reality of tx ([, 7) are that 

and 
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The desired information about the noise lies in the values of the spatial averages 
of t (t, 7) and t2 (t, 7). Consider first the average of t ( 5 , ~ )  or (t (6,~)). Since averag- 
ing is a linear process, from Eq. (C-l), 

(t (E>7) )  = t o  + t l (S  ( E ,  7)) + (8 ( E ,  7) t N  ( E ,  7)) 

As defined earlier, the normalization of s(E, 7) is such that (s(& 7)) = 1. Also, the 
third term vanishes since the spatial average can be broken into averages along 
strips taken parallel to the scan lines and then an average over these strips. The 
averages along the strips all vanish since s (t, 7) is constant along a strip parallel 
to the scan lines and (tN (t, 7)) = 0, since t N  (t, 7) is assumed to be an isotropic 
function of position, so that the whole average (s (t, 7) t N  (t, 7)) vanishes. Thus, 
the average transmission of the noisy image of a uniform field is 

I 

Finally, consider the average of t' ( 6 , ~ )  or (t' (t, 7)). From Eq. (C-l), one has 

(t2 (t, 7)) = t6 + t: (s2 (5, 7))  + (s' (<>7)  (t, 7)) + 2tdl (s (6, 7)) f2tO (8 ( E >  7) t N  (6, '7)) + (8' ( E ,  7) t N  ( E >  r l ) )  

Now, by the above arguments, several terms vanish and straightforward averages 
are evaluated, so that 

(t' ( E ,  7)) = ti + 2tot1 + tf (s2 (t, 7)) + (s2 (497) t B  (E,7)) 

Furthermore, by the same arguments, the last term can be broken into two aver- 
ages; thus, 

I 
(s2 (637) tf (t, 7)) = (s2 (t, 7)) (t$ (t, 7)) 

Note that this result also follows from the Fourier integral representations for 
s (6, 7) and ts  (6, q), remembering that + (k4, k,) in the representation of tN (t, 7)  
is a random variable. In any case, one has 

(C-5) (t2 ( E , 7 ) )  = t'o + 2tOtl + t: (s2 ( E ,  7)) + (s2 ( E ,  7)) (t i  ( t ,  77)) I 
It is useful to write the averages (s2 (6, 7)) and (tZ (t, 7)) in terms of their Fourier 
transformations. First of all, s (& q) ,  representing the scan-line structure, is a 
periodic function of one direction only and constant in the other. Let the 7-axis 
be normal to the scan lines, so that s ( 6 , ~ )  = s (T), and let the scan lines be periodic 
in a distance p. Then, s (7) can be written as 
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Similarly, the average (tJ ( 6 , ~ ) )  is calculated, using Eq. (C-2),  as 

Then, being somewhat lax about limits, it follows that 

and, using Eq. (C-3), one finally has 

(tf (6,7)) = 1: dkt 1: dk, I TX k,) I (C-7) 

Now, having calculated (t ( 5 , ~ ) )  and (t' ( 4 ,  v)), one finds the rms noise variations 
(t.V)rms as follows. By definition, 

(tN):ms = ( [ t  (t, 7) - (t (t, 7))12) = ( tz  (t, 7)) - (t ( 4 3  7))' 

So, from Eqs. (C-4) and (C-5), 

( t N ) : m s  = [(s2 (t, 7)) - 11 + (s2 (t, 77))  (tB (t, 7)) (C-8) 

In the Fourier representation, then, noting that (s (t, 7)) = 1 implies from 

that A, = 1, one has 

which is the desired result. 

As mentioned earlier, it remains only to determine the various constants in the 
expression for the transmission (see Eq. C-1) and the amplitudes of the scan-line 
and noise fluctuations. Given these, (tN)rms can be computed from Eq. (C-9). To 
measure the required parameters, consider the output of a scanning micro- 
photometer. For simplicity, let the aperture be rectangular, with dimensions d ,  
and d,, and let the aperture orientation be as shown in Fig. C-1, with the sides 
parallel to the 5- and 7-axes. Let a (u,w)-coordinate system be located with its 
origin at the center of the aperture and with its axes parallel to the (t ,~)-axes.  
Finally, let the center of the aperture move with velocity components vc and V ,  

in the ([,?)-coordinate system. A point with coordinates (u,w) in the aperture 
coordinate system has coordinates (u + VET, w + V,T) in the (5, q)-system at 
time T .  Then, since the microphotometer measures the average transmission over 
the aperture, the output P ( T )  at a particular time T is given by 

(T) = (t ( U  + V t T ,  w + V?,JT>)~ = t o  + tl (8 ( w  + % T ) ) a  f (s (w + V v T )  t N  ( u  -t w + V 7 T ) ) a  

where t ([, 9 )  is the noisy transmission distribution given in Eq. (C-l), and the 
average of t (t, 7) over the aperture (t (u + vcT, w + is given by 
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W 

Fig. C-1. Scanning-aperture geometry 

Using the Fourier representation for the various terms in t (& T ) ,  ta ( T )  becomes, 
after some calculation, 

Then, if u, # 0, it follows that 

is simply 

(P ( 7 ) )  = t,, f t ,A,,  = to + t ,  (C-11) 

where it is recalled that (s (.$,?I)) = 1 implies that A,, = 1. Obviously, the larger the 
scanning aperture, the faster (t ( 7 ) )  converges in time, since the functions of 
the form sinax/ar (a is related linearly to the aperture dimension and x to the 
spatial frequency) exhibit a progressively sharper peak about x = 0 for increas- 
ingly larger u. 

The shape and amplitude of the scan-line function can be determined simply 
by scanning only in the direction normal to the scan lines (06 = 0), with an aper- 
ture having (1, as largc as possible and d, < < p, the periodicity dimension of the 
scan lines. Making d ,  large greatly reduces the amplitude of the random noise 
term in Eq. (C-lo), and if t i ,  << p, the factor sin (Tmd,/p)/(nmd,/p) is 
very nearly unity for I ml < < p/ds, which is a large number. However, the 
amplitudes A,,, become small for rather small lml, so that making d ,  < < p 
guarantees a good reproduction of the signficant sine-wave components of s (7)  
and, hence, of s(7) itself. Thus, averaging out what remains of the random noise, 
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a trace normal to the scan lines with an aperture of appropriate dimensions gives 
as the time-dependent output from the microphotometer 

which follows directly from Eq. (C-10) and the Fourier representation of ~ ( 1 7 ) .  
From this output, the shape and amplitude of the scan-line structure can be 
determined. 

Finally, given some shape for the noise spectrum, it remains to determine its 
absolute normalization. Let TOTs (kz,  k,) be the complete spectral distribution of 
the noise, where T ,  (k2,  k,) is a function with fixed normalization determining the 
shape of the spectrum and To  is a constant determining the absolute normaliza- 
tion. Now, let the film be scanned in the direction parallel to the scan lines, with 
an aperture having dimension d ,  normal to the scan lines which is very small 
compared to the scan-line periodicity dimension p. Then, if the position of the 
center of the aperture is ( v ~ T ,  v,,), the microphotometer output is 

and 

Using the previous arguments, the averages 
puted as 

and ( ( t a ) ? ( T ) )  can be com- 

(t" (7)) = t o  + tis (To)  

so that the square of the rms microphotometer output noise (t;.),.ms is 

Now, 

from which it follows that 
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and, finally, 

Therefore, 

from which the normalization constant T,, can be determined, given the general 
spectrum shape TN (k l ,  k,). Hence, the information needed in computing (tX)fms 
in Eq. ((2-9) can be obtained simply from the film under consideration with a 
scanning microphotometer. 
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